Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Sci Rep ; 14(1): 8139, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584168

ABSTRACT

Pedestrian safety, particularly for children, relies on well-designed pathways. Child-friendly pathways play a crucial role in safeguarding young pedestrians. Shared spaces accommodating both vehicles and walkers can bring benefits to pedestrians. However, active children playing near these pathways are prone to accidents. This research aims to develop an efficient method for planning child-friendly pedestrian pathways, taking into account community development and the specific needs of children. A mixed-methods approach was employed, utilizing the Datang community in Guangzhou, China, as a case study. This approach combined drawing techniques with GIS data analysis. Drawing methods were utilized to identify points of interest for children aged 2-6. The qualitative and quantitative fuzzy analytic hierarchy process assessed factors influencing pathway planning, assigning appropriate weights. The weighted superposition analysis method constructed a comprehensive cost grid, considering various community elements. To streamline the planning process, a GIS tool was developed based on the identified factors, resulting in a practical, child-friendly pedestrian pathway network. Results indicate that this method efficiently creates child-friendly pathways, ensuring optimal connectivity within the planned road network.


Subject(s)
Geographic Information Systems , Pedestrians , Humans , Accidents, Traffic , Safety , Risk Factors , Walking
2.
Cell Death Discov ; 10(1): 112, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438362

ABSTRACT

Intestinal ischemia-reperfusion (I/R) is a multifaceted pathological process, and there is a lack of clear treatment for intestinal I/R injury. During intestinal I/R, oxidative stress and inflammation triggered by cells can trigger a variety of cell death mechanisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis. These cell death processes can send a danger signal for the body to be damaged and prevent intestinal I/R injury. Therefore, identifying key regulatory molecules or markers of these cell death mechanisms when intestinal I/R injury occurs may provide valuable information for the treatment of intestinal I/R injury. This paper reviews the regulatory molecules and potential markers that may be involved in regulating cell death during intestinal I/R and elaborates on the cell death mechanism of intestinal I/R injury at the molecular level to provide a theoretical basis for discovering new molecules or markers regulating cell death during intestinal I/R injury and provides ideas for drug development for the treatment of intestinal I/R injury.

3.
Pharmacol Res ; : 107148, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38522760

ABSTRACT

The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.

4.
Chin Med ; 19(1): 4, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183094

ABSTRACT

BACKGROUND: Usenamine A, a novel natural compound initially isolated from the lichen Usnea longissima, has exhibited promising efficacy against hepatoma in prior investigation. Nevertheless, the underlying mechanisms responsible for its antihepatoma effects remain unclear. Furthermore, the role of the AKT/mechanistic target of the rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3)/inhibitor of differentiation/DNA binding 1 (ID1) signaling axis in hepatocellular carcinoma (HCC), and the potential anti-HCC effects of drugs targeting this pathway are not well understood. METHODS: CCK-8 assay was used to investigate the effects of usenamine A on the proliferation of human HCC cells. Moreover, the effects of usenamine A on the invasion ability of human HCC cells were evaluated by transwell assay. In addition, expression profiling analysis, quantitative real-time PCR, immunoblotting, immunohistochemistry (IHC) analysis, RNAi, immunoprecipitation, and chromatin immunoprecipitation (ChIP) assay were used to explore the effects of usenamine A on the newly identified AKT/mTOR/STAT3/ID1 signaling axis in human HCC cells. RESULTS: Usenamine A inhibited the proliferation and invasion of human HCC cell lines (HepG2 and SK-HEP-1). Through the analysis of gene expression profiling, we identified that usenamine A suppressed the expression of ID1 in human HCC cells. Furthermore, immunoprecipitation experiments revealed that usenamine A facilitated the degradation of the ID1 protein via the ubiquitin-proteasome pathway. Moreover, usenamine A inhibited the activity of STAT3 in human HCC cells. ChIP analysis demonstrated that STAT3 positively regulated ID1 expression at the transcriptional level in human HCC cells. The STAT3/ID1 axis played a role in mediating the anti-proliferative and anti-invasive impacts of usenamine A on human HCC cells. Additionally, usenamine A suppressed the STAT3/ID1 axis through AKT/mTOR signaling in human HCC cells. CONCLUSION: Usenamine A displayed robust anti-HCC potential, partly attributed to its capacity to downregulate the AKT/mTOR/STAT3/ID1 signaling pathway and promote ubiquitin-proteasome-mediated ID1 degradation. Usenamine A has the potential to be developed as a therapeutic agent for HCC cases characterized by abnormal AKT/mTOR/STAT3/ID1 signaling, and targeting the AKT/mTOR/STAT3 signaling pathway may be a viable option for treating patients with HCC exhibiting elevated ID1 expression.

5.
Sci Total Environ ; 912: 168914, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029986

ABSTRACT

Farmland quality (FQ) evaluation is crucial to curb agricultural land's "non-grain" behavior and promote ecological nitrogen trade-off in North China. However, a promising approach to obtain the verified spatial distribution of nitrogen emissions remains to be developed, making it difficult to achieve the precise FQ estimation. Facing this issue, we present a Machine Learning (ML) - Nitrogen Export Verification (NEV) ensemble framework for the precise evaluation of FQ, taking the Beijing-Tianjin-Hebei 200 km traffic zone (zone) as the case. This was done by employing physical models for the precisely spatial estimation of Nitrogen Export (NE) values and then using ML methods to compute the spatial distribution of FQ using the Farmland Quality Evaluation System (FQES) indicators. We found: (1) the ML - NEV framework showed promising results, as the relative error of the NEV method was lower than 5.25 %, and the Determination coefficient of the ML method in FQ evaluation was higher than 0.84; (2) the FQ results within the zone were mainly good-quality areas (~47.25 % and primarily concentrated in the southwest-northeast regions) with improvement significance, with Fractal Dimension, NE values, and unbalanced Irrigation or Drainage Capabilities serving as the primary driving factors. Our results would be helpful in offering decision support for improving FQ based on refined grids, benefiting to Agribusiness Revitalization Plans (i.e., safeguarding grain yield, activating agribusiness development, Etc.) in developing countries.

6.
Adv Sci (Weinh) ; 11(9): e2303057, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38098252

ABSTRACT

Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.

7.
Chemosphere ; 350: 140963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114022

ABSTRACT

Previous studies have revealed links between metal(loid)s and health problems; however, the link between metal(loid)s and obesity remains controversial. We evaluated the cross-sectional association between metal(loid) exposure in whole blood and obesity among the general population. Vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), thallium (T1), and lead (Pb) were measured in 3029 subjects in Guangdong Province (China) using ICP-MS. The prevalence of overweight and obesity (OWO) and abdominal obesity (AOB) was calculated according to body mass index (BMI) and waist circumference (WC), respectively. Multivariate analysis showed that elevated blood Cu, Cd, and Pb levels were inversely associated with the risk of OWO, and these associations were confirmed by a linear dose-response relationship. Elevated blood Co concentration was associated with a decreased risk of AOB. A quantile g-computation approach showed a significantly negative mixture-effect of 13 metal(loid)s on OWO (OR: 0.96; 95% CI: 0.92, 0.99). Two metals-Ni and Mo-were inversely associated with the risk of OWO but positively associated with AOB. We cross-grouped the two obesity measurement types and found that the extremes of metal content were present in people with AOB only. In conclusion, blood Cu, Mo, Ni, Cd, and Pb were inversely associated with the risk of OWO. The presence of blood Co may be protective, while Ni and Mo exposure might increase the risk of AOB. The association between metal(loid) exposure and obesity warrants further investigation in longitudinal cohort studies.


Subject(s)
Arsenic , Metals, Heavy , Humans , Cross-Sectional Studies , Cadmium/analysis , Overweight/epidemiology , Obesity, Abdominal/epidemiology , Lead/analysis , Longitudinal Studies , Arsenic/analysis , Nickel/analysis , Molybdenum/analysis , Cobalt/analysis , China/epidemiology , Metals, Heavy/analysis , Environmental Monitoring
8.
Sci Rep ; 13(1): 22751, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123722

ABSTRACT

Plants with partial or complete loss of chlorophylls and other pigments are frequently occurring in nature but not commonly found. In the present study, we characterize a leaf color mutant 'arly01' with an albino stripe in the middle of the leaf, which is an uncommon ornamental trait in Anoectochilus roxburghii. The albino "mutant" middle portion and green "normal" leaf parts were observed by transmission electron microscopy (TEM), and their pigment contents were determined. The mutant portion exhibited underdevelopment of plastids and had reduced chlorophyll and other pigment (carotenoid, anthocyanin, and flavonoid) content compared to the normal portion. Meanwhile, comparative transcript analysis and metabolic pathways mapping showed that a total of 599 differentially expressed genes were mapped to 78 KEGG pathways, most of which were down-regulated in the mutant portion. The five most affected metabolic pathways were determined to be oxidative phosphorylation, photosynthesis system, carbon fixation & starch and sucrose metabolism, porphyrin and chlorophyll metabolism, and flavonoid biosynthesis. Our findings suggested that the mutant 'arly01' was a partial albinism of A. roxburghii, characterized by the underdevelopment of chloroplasts, low contents of photosynthetic and other color pigments, and a number of down-regulated genes and metabolites. With the emergence of ornamental A. roxburghii in southern China, 'arly01' could become a popular cultivar due to its unique aesthetics.


Subject(s)
Chlorophyll , Gene Expression Profiling , Chlorophyll/metabolism , Chromosome Mapping , Flavonoids/metabolism , Plant Leaves/metabolism , Transcriptome , Gene Expression Regulation, Plant , Color
9.
Chin Med ; 18(1): 132, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833746

ABSTRACT

Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.

10.
J Nat Prod ; 86(9): 2122-2130, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37672645

ABSTRACT

The integration of NMR-metabolomic and genomic analyses can provide enhanced identification of structural properties as well as key biosynthetic information, thus achieving the targeted discovery of new natural products. For this purpose, NMR-based metabolomic profiling of the marine-derived Streptomyces sp. S063 (CGMCC 14582) was performed, by which N-methylated peptides possessing unusual negative 1H NMR chemical shift values were tracked. Meanwhile, genome mining of this strain revealed the presence of an unknown NRPS gene cluster (len) with piperazic-acid-encoding genes (lenE and lenF). Under the guidance of the combined information, two cyclic decapeptides, lenziamides D1 (1) and B1 (2), were isolated from Streptomyces sp. S063, which contains piperazic acids with negative 1H NMR values. The structures of 1 and 2 were determined by extensive spectroscopic analysis combined with Marfey's method and ECD calculations. Furthermore, we provided a detailed model of lenziamide (1 and 2) biosynthesis in Streptomyces sp. S063. In the cytotoxicity evaluation, 1 and 2 showed moderate growth inhibition against the human cancer cells HEL, H1975, H1299, and drug-resistant A549-taxol with IC50 values of 8-24 µM.


Subject(s)
Biological Products , Streptomyces , Humans , Magnetic Resonance Imaging , Metabolomics , Genomics , Biological Products/pharmacology , Streptomyces/genetics
11.
Am J Chin Med ; 51(7): 1627-1651, 2023.
Article in English | MEDLINE | ID: mdl-37638827

ABSTRACT

The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/pharmacology , Medicine, Chinese Traditional , Immune Checkpoint Proteins/pharmacology , Programmed Cell Death 1 Receptor , Neoplasms/pathology , Immunotherapy , Tumor Necrosis Factors/pharmacology , Tumor Microenvironment
12.
J Org Chem ; 88(11): 7096-7103, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37178146

ABSTRACT

Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.


Subject(s)
Alkaloids , Antineoplastic Agents , Syringa , Humans , Syringa/chemistry , Terpenes , Molecular Structure , Plant Extracts , Alkaloids/pharmacology , Benzoquinones , Quinones
13.
Plant Genome ; 16(3): e20348, 2023 09.
Article in English | MEDLINE | ID: mdl-37194434

ABSTRACT

A weak codon usage bias was found in Dendrobium catenatum (D. officiale) antimicrobial peptides (AMPs), after the analysis of relative synonymous codon usage, GC contents, and the effective number of codons. The codon usage preference was mainly influenced by natural selection pressure. The self-optimized prediction method and SWISS-MODEL were applied for peptide structural and domain analyses, and some typical antimicrobial domains were found in D. officinale AMP amino sequences, such as knot1 domain, gibberellins-stimulated domain, cupin_1 domain, defensin_like domain, and SLR1-BP (S locus-related glycoprotein 1 binding pollen coat protein) domain. To investigate the AMPs gene expression pattern, abiotic stresses, such as salt stress, drought stress, salicylic acid (SA), and methyl jasmonate (JA), were applied and the gene expression levels were detected by the real-time fluorescent quantitative polymerase chain reaction. Results showed that, even though the basic AMPs gene expressions were low, some AMPs can still be induced by salt dress, while the drought dress did not show the same impact. The SA and JA signaling pathways might be involved in most of the AMPs expressions. The natural selection of the D. officinale AMPs and thus forming diverse types of AMPs enhanced the plant's innate immunity and disease resistance capability, which would lead to a better understanding of the molecular mechanism for D. officinale adapting to the environment. The finding that salt stress, SA, and JA signaling pathways can induce AMP expression lays a foundation for the further development and functional verification of D. officinale AMPs.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Antimicrobial Peptides , Genes, Plant , Genomics , Salicylic Acid/metabolism , Gene Expression
14.
Phytomedicine ; 116: 154895, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37229890

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide. Myosin-9's role in HCC and the anti-HCC effect of the drugs targeting Myosin-9 remain poorly understood so far. Candidate antitumor agents obtained from natural products have attracted worldwide attention. Usenamine A is a novel product, which was first extracted in our laboratory from the lichen Usnea longissima. According to published reports, usenamine A exhibits good antitumor activity, while the mechanisms underlying its antitumor effects remain to be elucidated. PURPOSE: The present study investigated the anti-hepatoma effect of usenamine A and the underlying molecular mechanisms, along with evaluating the therapeutic potential of targeting Myosin-9 in HCC. METHODS: The CCK-8, Hoechst staining, and FACS assays were conducted in the present study to investigate how usenamine A affected the growth and apoptosis of human hepatoma cells. Moreover, TEM, acridine orange staining, and immunofluorescence assay were performed to explore the induction of autophagy by usenamine A in human hepatoma cells. The usenamine A-mediated regulation of protein expression in human hepatoma cells was analyzed using immunoblotting. MS analysis, SPR assay, CETSA, and molecular modeling were performed to identify the direct target of usenamine A. Immunofluorescence assay and co-immunoprecipitation assay were conducted to determine whether usenamine A affected the interaction between Myosin-9 and the actin present in human hepatoma cells. In addition, the anti-hepatoma effect of usenamine A was investigated in vivo using a xenograft tumor model and the IHC analysis. RESULTS: The present study initially revealed that usenamine A could suppress the proliferation of HepG2 and SK-HEP-1 cells (hepatoma cell lines). Furthermore, usenamine A induced cell apoptosis via the activation of caspase-3. In addition, usenamine A enhanced autophagy. Moreover, usenamine A administration could dramatically suppress the carcinogenic ability of HepG2 cells, as evidenced by the nude mouse xenograft tumor model. Importantly, it was initially revealed that Myosin-9 was a direct target of usenamine A. Usenamine A could block cytoskeleton remodeling through the disruption of the interaction between Myosin-9 and actin. Myosin-9 participated in suppressing proliferation while inducing apoptosis and autophagy in response to treatment with usenamine A. In addition, Myosin-9 was revealed as a potential oncogene in HCC. CONCLUSIONS: Usenamine A was initially revealed to suppress human hepatoma cells growth by interfering with the Myosin-9/actin-dependent cytoskeleton remodeling through the direct targeting of Myosin-9. Myosin-9 is, therefore, a promising candidate target for HCC treatment, while usenamine A may be utilized as a possible anti-HCC therapeutic, particularly in the treatment of HCC with aberrant Myosin-9.


Subject(s)
Autophagic Cell Death , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Actins , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , Apoptosis , Hep G2 Cells , Cytoskeletal Proteins/pharmacology , Cytoskeletal Proteins/therapeutic use , Cytoskeleton/metabolism , Xenograft Model Antitumor Assays
15.
Biochem Pharmacol ; 211: 115518, 2023 05.
Article in English | MEDLINE | ID: mdl-36966937

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is extremely malignant in nature. It is an important way to discover anti-cancer drugs from natural products at present. (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), a natural flavonoid, was isolated from Resina Draconis which is the red resin from Dracaena cochinchinensis (Lour.) S. C. Chen. However, the anti-hepatoma effect and underlying mechanisms of DHMMF remain unclear. Herein, we demonstrated that DHMMF treatment significantly inhibited the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. The IC50 value of DHMMF for HepG2 and SK-HEP-1 cells were 0.67 µM and 0.66 µM, respectively, while the IC50 value of DHMMF for human normal liver LO2 cells was 120.60 µM. DHMMF induced DNA damage, apoptosis, and G2/M phase arrest in HepG2 and SK-HEP-1 cells. Furthermore, the anti-proliferative and pro-apoptotic effects of DHMMF in human hepatoma cells were mediated by the upregulation of p21. Importantly, DHMMF exhibited potent anti-HCC efficacy in a xenograft mice model and an orthotopic mice model of liver cancer. Additionally, the combined administration of DHMMF and polo-like kinase 1 (PLK1) inhibitor BI 6727 showed a synergistic anti-HCC efficacy. Collectively, we demonstrated that DHMMF treatment induced apoptosis and G2/M phase arrest via DNA damage-driven upregulation of p21 expression in human hepatoma cells. DHMMF may serve as a promising drug candidate for HCC treatment, especially for patients of HCC with low p21 expression. Our results also suggested that DHMMF treatment in combination with PLK1 inhibitor may serve as a potential treatment strategy for patients with HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Up-Regulation , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cell Proliferation , Hep G2 Cells , Antineoplastic Agents/pharmacology , Apoptosis , DNA Damage , Cell Division
16.
J Sport Rehabil ; 32(4): 449-461, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36791728

ABSTRACT

OBJECTIVES: To explore the immediate and retention effect of real-time tibial acceleration feedback on running biomechanics during gait retraining. METHODS: Five electronic databases were searched to identify relevant studies published before May 2022. The included studies were evaluated for methodological quality and bias risk, and data were extracted. A meta-analysis was conducted on the primary outcomes, including peak tibial acceleration (PTA) and vertical ground reaction force. Subgroup analysis was performed by gender, feedback criterion, mode, dosage, fading, retention period, and running environment to evaluate the source of heterogeneity. Qualitative analysis was performed to describe other variables. RESULTS: Fourteen studies (174 participants) were eligible. Meta-analysis showed that real-time tibial acceleration feedback reduced PTA (P < .01, P < .01), vertical impact peak (P = .004, P < .01), vertical average loading rate (P < .01, P < .01), and vertical instantaneous loading rate (P < .01, P < .01) after feedback and during retention period (5 min-12 mo). Subgroup analysis showed that the immediate effect of vertical impact peak was more noticeable with mixed gender (P = .005) and fading feedback (P = .005) conditions, and the retention effect of PTA was more noticeable with high feedback dosage (P < .01) and fading feedback (P < .01) conditions. CONCLUSIONS: Real-time tibial acceleration feedback can reduce PTA and vertical ground reaction force during gait retraining, and for periods of 5 minutes to 12 months when the feedback is removed.


Subject(s)
Fractures, Stress , Running , Humans , Feedback , Biomechanical Phenomena , Gait , Acceleration
17.
Article in English | MEDLINE | ID: mdl-36767443

ABSTRACT

Studying the spatiotemporal evolution of carbon emissions from the perspective of major function-oriented zones (MFOZs) is crucial for making a carbon reduction policy. However, most previous research has ignored the spatial characteristics and MFOZ influence. Using statistical and spatial analysis tools, we explored the spatiotemporal characteristics of carbon emissions in Guangdong Province from 2001 to 2021. The following results were obtained: (1) Carbon emissions fluctuated from 2020 to 2021 because of COVID-19. (2) Over the last 20 years, the proportion of carbon emissions from urbanization development zones (UDZs) has gradually decreased, whereas those of the main agricultural production zones (MAPZs) and key ecological function zones (KEFZs) have increased. (3) Carbon emissions efficiency differed significantly among the three MFOZs. (4) Carbon emissions from coastal UDZs were increasingly apparent; however, the directional characteristics of MAPZ and KEFZ emissions were not remarkable. (5) Carbon transfer existed among the three kinds of MFOZs, resulting in the economy and carbon emissions being considerably misaligned across Guangdong Province. These results indicated that the MFOZ is noteworthy in revealing how carbon emissions evolved. Furthermore, spatiotemporal characteristics, especially spatial characteristics, can help formulate carbon reduction policies for realizing carbon peak and neutrality goals in Guangdong Province.


Subject(s)
COVID-19 , Carbon , Humans , Carbon/analysis , COVID-19/epidemiology , Urbanization , Agriculture , China , Carbon Dioxide/analysis , Economic Development
18.
Phytother Res ; 37(2): 689-701, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36245270

ABSTRACT

Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.


Subject(s)
Dracaena , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Beclin-1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Sirolimus , Down-Regulation , Plant Extracts/pharmacology , Plant Extracts/metabolism , Dracaena/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy
19.
Clin Nurs Res ; 32(3): 629-638, 2023 03.
Article in English | MEDLINE | ID: mdl-36169279

ABSTRACT

This study recruited 9,830 participants to identify whether the interaction between obesity and hypertension affects the occurrence of arteriosclerosis in Chinese adults. Brachial-ankle pulse wave velocity (baPWV) was measured to diagnose arteriosclerosis. Unconditional logistic regression was used for multiplicative interaction. The additive interaction was represented by relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy (S). Hypertension was an independent risk factor for baPWV (p < .01), but obesity was not (p = .08). The interaction between obesity and hypertension on arteriosclerosis was not multiplicative (adjusted odds ratio = 0.89 (0.79-1.01), p = .07), but a negative additive interaction (RERI = -4.33, AP = -2.91, S = 0.10; p < .01) exists. Therefore, obesity may reduce the risk of arteriosclerosis caused by hypertension when hypertension and obesity coexist, especially in women and middle-aged people, which supports the obesity paradox.


Subject(s)
Arteriosclerosis , Hypertension , Middle Aged , Adult , Humans , Female , Cross-Sectional Studies , Ankle Brachial Index , East Asian People , Pulse Wave Analysis , Hypertension/complications , Obesity/complications , Obesity/epidemiology , Arteriosclerosis/complications , Risk Factors
20.
Front Public Health ; 10: 1042236, 2022.
Article in English | MEDLINE | ID: mdl-36504986

ABSTRACT

Objective: To compare the predictive performance of the percentage body fat (PBF), body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), waist-height ratio (WHtR), a body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), and conicity index (CI) for identifying hypertension. Methods: A cross-sectional study was conducted among 2,801 adults (1,499 men and 1,302 women) aged 18 to 81 in Ningbo, China. The receiver operator characteristic (ROC) analysis and multiple non-parametric Z tests were used to compare the areas under the curve (AUC). The maximum Youden's indices were used to determine the optimal cut-off points of 10 obesity-related indices (ORI) for hypertension risk. Results: The AUC of all the indices were statistically significant (P < 0.05). The AUC of all the indices in men and women were 0.67-0.73 and 0.72-0.79, respectively. Further non-parametric Z tests showed that WHR had the highest AUC values in both men [0.73 (95% CI: 0.70, 0.76)] and women (0.79 (95% CI: 0.75, 0.83)], and several central ORI (men: WHR, WC, BRI, AVI, and CI, 0.71-0.73; women: WC, WHR, and AVI, 0.77-0.79) were higher than general ORI (PBF and BMI, 0.68 in men; 0.72-0.75 in women), with adjusted P < 0.05. The optimal cut-off points for identifying hypertension in men and women were as follows: PBF (23.55%, 32.55%), BMI (25.72 kg/m2, 23.46 kg/m2), HC (97.59 cm, 94.82 cm), WC (90.26 cm, 82.78 cm), WHR (0.91, 0.88), WHtR (0.51, 0.55), ABSI (0.08 m7/6/kg2/3, 0.08 m7/6/kg2/3), BRI (4.05, 4.32), AVI (16.31 cm2, 13.83 cm2), and CI (1.23 m2/3/kg1/2, 1.27 m2/3/kg1/2). Multivariate logistic regression models showed that all indices were statistically significant (P < 0.05) with the adjusted ORs (per 1-SD increase) at 1.39-2.06 and ORs (over the optimal cut-off points) at 1.80-2.64. Conclusions: All 10 ORI (PBF, BMI, HC, WC, WHR, WHtR, ABSI, BRI, AVI, and CI) can effectively predict hypertension, among which WHR should be recommended as the best predictor. Central ORI (WHR, WC, and AVI) had a better predictive performance than general ORIs (PBF and BMI) when predicting the risk of hypertension.


Subject(s)
East Asian People , Hypertension , Adult , Male , Female , Humans , Cross-Sectional Studies , ROC Curve , Hypertension/diagnosis , Hypertension/epidemiology , Obesity/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...